જો $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
1&1
\end{array}} \right]$ અને  $\det ({A^n} - I) = 1 - {\lambda ^n}\,,\,n \in N$ તો $\lambda $ મેળવો.

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

જો $A_1B_1C_1,\, A_2B_2C_2,\, A_3B_3C_3$ એ ત્રણ અંકોની સંખ્યા છે કે જે $k$ વડે વિભાજ્ય છે અને $\Delta  = \left| {\begin{array}{*{20}{c}}
  {{A_1}{\kern 1pt} }&{{B_1}}&{{C_1}} \\ 
  {{A_2}}&{{B_2}}&{{C_2}} \\ 
  {{A_3}}&{{B_3}}&{{C_3}} 
\end{array}} \right|$ હોય તો  $\Delta $ એ  . .  વડે વિભાજ્ય છે .

નિશ્ચાયકનો ઉપયોગ કરી $(1, 2)$ અને $(3, 6)$ ને જોડતી રેખાનું સમીકરણ શોધો.

$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ = . . .

જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો  $S$ એ  . . . .

  • [JEE MAIN 2018]

સમીકરણ સંહતિને ધ્યાનમાં લ્યો.

$-x+y+2 z=0$  ;   $3 x-a y+5 z=1$  ; $2 x-2 y-a z=7$

જો ગણ $S_{1}$ એ દરેક  $\mathrm{a} \in {R}$ કે જેના માટે સમીકરણ સહંતિ સુંસંગત નથી તેને સમાવે છે  અને  $S_{2}$ એ $a \in {R}$ કે જેના માટે સમીકરણને અનંત ઉકેલ તેને સમાવે છે . જો $n\left(S_{1}\right)$ અને $n\left(S_{2}\right)$ એ અનુક્રમે $S_{1}$ અને $\mathrm{S}_{2}$ ની સભ્ય સંખ્યા હોય તો 

  • [JEE MAIN 2021]